сообщение №1007

Практическая аэродинамика

Снижение расхода топлива, пожалуй, наиболее актуальная проблема в современном автомобилестроении. Расход этот зависит прежде всего от объективного фактора — различных сил сопротивления движению, на преодоление которых затрачивается энергия сгорания топлива. Уменьшение их — один из путей его экономии. Наша статья посвящена резервам, заключенным в улучшении аэродинамических свойств автомобиля.

В общем сопротивлении движению автомобиля аэродинамические силы могут составлять существенную часть. Если при езде по городскому циклу (средняя скорость 40—50 км/ч) они достигают 8%, при движении в пригородной зоне (средняя скорость 80—90 км/ч) — 29%, то на автострадах — 53%. Отметим, что чем выше скорость, тем быстрее растут потери «на ветер»: уже при 60 км/ч они отнимают больше энергии, чем любая другая составляющая. Дело в том, что мощность, расходуемая на преодоление аэродинамического сопротивления, пропорциональна кубу скорости; значит, если скорость удваивается, то мощность должна увеличиться в восемь раз.

Чтобы уяснить, как возникает и воздействует на автомобиль сопротивление воздуха, рассмотрим, из чего оно складывается. Взаимодействие воздуха и автомобиля можно представить как сумму сопротивлений: профильного, индуктивного, внутреннего, а также сопротивлений трения и выступов. Наибольший «вклад» (около 58%) приходится на профильное. Оно обусловлено самой формой кузова. Воздух, обтекающий автомобиль, как бы сжимается впереди него, создавая значительное положительное давление. Поток, идущий по верхней части кузова, неоднократно отрывается от его поверхности, что создает в этих местах области пониженного давления. В задней же части поток окончательно отрывается от кузова. Там образуется мощный вихревой след и область больших отрицательных давлений. Положительное давление впереди автомобиля и отрицательное сзади препятствуют движению, создавая сопротивление давлений, или профильное сопротивление воздуха.

Индуктивное сопротивление (8% в общем балансе) вызывается разностью давлений на верхнюю и нижнюю части кузова. В результате их взаимодействия возникает сила, отжимающая автомобиль от земли, — подъемная. Хотя она и сокращает сопротивление качению, ее влияние на ходовые качества машины в целом отрицательно — это уменьшение силы сцепления колес с дорогой, которое влечет за собой ухудшение управляемости.

Сопротивление выступов (13% всех потерь). Очевидно, что свой вклад в полное аэродинамическое сопротивление вносит любая выступающая деталь автомобиля (зеркало, антенна, ручки дверей и т. д.). Так, багажник на крыше при скорости 60 км/ч увеличивает его на 10—12%, из-за чего на 2—3% растет расход топлива. Специалисты ряда фирм считают, что только изменение подобных деталей может улучшить топливную экономичность на 3—4%.

Зависимость расхода топлива (л/100 км) от скорости (км/ч) при разных коэффициентах лобового сопротивления для легкового автомобиля снаряженной массой
Зависимость расхода топлива (л/100 км) от скорости (км/ч) при разных коэффициентах лобового сопротивления для легкового автомобиля снаряженной массой 1000 кг и мощностью 75 л.с./55 кВт.

Сопротивление трения (11% всех потерь) обусловлено «прилипанием» к поверхности кузова слоев воздуха, вследствие чего поток вблизи нее теряет скорость. Потери энергии на поверхностное трение зависят главным образом от качества отделки кузова. Во всяком случае, эксперименты показали, что если у нового полированного автомобиля оно составляет около 8% общего сопротивления воздуха, то у плохо покрашенного, с грубой поверхностью возрастает в 2—2,5 раза. В частности, поверхностное трение заметно увеличивается в случае, когда крыша обтянута модным гранулированным виниловым кожзаменителем.

Внутреннее сопротивление (10% всех потерь) возникает при прохождении воздуха через системы охлаждения и вентиляции. Природа этих потерь такова, что возможность снизить их в настоящее время весьма проблематична.

Количественной характеристикой суммарного аэродинамического сопротивления служит так называемый коэффициент лобового сопротивления — Сх, который, как правило, определяют экспериментальным путем. Для этого автомобиль или его уменьшенный макет устанавливают в аэродинамическую трубу и моделируют его обтекание воздушным потоком. Меньшую точность дают некоторые методы дорожных испытаний.

Коэффициент лобового сопротивления у легковых автомобилей, выпущенных разными фирмами в 70-х и 80-х годах, колеблется (см. таблицу) от 0,30 до 0,60. В среднем он составляет в настоящее время 0,43. Для сравнения: среднее значение Сх у машин выпуска 1938 года — 0,58. Наименьшим коэффициентом отличаются автомобили, предназначенные для установления рекордов скорости — 0,2 («Звезда—6», СССР) и 0,15 («Фольксваген-АРФВ», ФРГ).

Формирование вихрей при обтекании воздухом передней части кузова.
Формирование вихрей при обтекании воздухом передней части кузова.

Вернемся к вопросу о затратах мощности и топлива на преодоление сопротивления воздуха. Приведенный на вкладке график показывает, как влияет на них изменение коэффициента лобового сопротивления при разных скоростях. В современных моделях явно заметна тенденция к его снижению, достигаемому конструктивными мерами (см. вкладку). Согласно проведенным за рубежом расчетам, при уменьшении Сх лишь на 0,01 экономия топлива в пересчете на весь парк легковых автомобилей Англии (около 10 миллионов) составит почти 70 миллионов литров в год (рабочий объем двигателя принят равным 1200 см3, а средний годовой пробег каждой машины — 16 тысяч километров). Теперь, когда мы представляем, что значит Сх для экономии топлива, небезынтересными окажутся и такие данные: дополнительные фары перед облицовкой радиатора увеличивают его на 0,04, грязезащитные фартуки у всех колес — на 0,03, выдвинутая антенна — на 0,02, наружное зеркало заднего вида — на 0,01, неубранные стеклоочистители — на 0,007. Все это дополнительное оборудование плюс багажник на крыше могут поднять суммарную величину Сх, скажем, для ВАЗ—2105 с 0,43 до 0,58, и это означает расход лишних 1—1,5 л бензина на 100 километров. Цифра достаточно убедительная для того, чтобы учитывать аэродинамические характеристики автомобиля как в эксплуатации, так и, прежде всего, на стадии проектирования. Не случайно внимание к исследованиям в этой области за последнее время значительно возросло.

Аэродинамические исследования ведут не только с целью снизить расход топлива. Они помогают добиваться прогресса в области активной безопасности автомобиля, положительно влиять и на такие составляющие комфортабельности, как эффективность вентиляции, шум в салоне, загрязнение стекол и фонарей.

Схема образования вихрей в задней части кузова.
Схема образования вихрей в задней части кузова.

Результаты перспективных разработок говорят о больших резервах, скрытых в улучшении аэродинамики автомобиля. Так, известные итальянские кузовные фирмы «Пининфарина» и «Итал Дизайн» создали несколько экспериментальных моделей, имеющих Сх 0,23—0,26. Правда, из-за технологических сложностей и, соответственно, высокой стоимости производства такие машины пока не выпускаются серийно.

Важную роль в улучшении аэродинамических качеств играют различные обтекатели, дефлекторы («За рулем», 1982, № 8), спойлеры, антикрылья, юбки («За рулем», 1981, № 4). Наиболее широко на легковых автомобилях в последнее время применяется передний спойлер (см. вкладку).

Это профилированный щиток — чаще всего продолжение передней панели кузова вниз, под бампер, или элемент самого бампера. Он служит для уменьшения нежелательной разгрузки колес, вызываемой повышенным давлением, которое образуется в зоне между днищем автомобиля и полотном дороги при движении. На скорости около 100 км/ч отрицательная (направленная вверх) нагрузка на передние колеса может превысить 100 кгс. В результате ухудшаются характеристики прямолинейного движения («держание» дороги), а также снижается боковая устойчивость при поворотах с большими скоростями.

Кроме того, протекание воздуха под автомобилем сопровождается значительным ростом сопротивления выступающих деталей подвески, системы выпуска и других — до 20% общего профильного сопротивления. Очевидно, идеальным было бы ровное или закрытое щитом днище, но практически достичь этого невозможно, хотя частично подобные нежелательные эффекты можно устранить установкой переднего спойлера. Изменяя направление потоков, обтекающих нижнюю часть машины, он создает под кузовом разрежение. Минимум же полного сопротивления достигается тогда, когда допустимая максимальная высота спойлера обеспечивает уменьшение аэродинамического сопротивления расположенных снизу деталей настолько, насколько увеличится сопротивление кузова. Испытания показали, однако, что установка спойлера может ухудшить охлаждение двигателя, системы выпуска, агрегатов трансмиссии. Вот почему его подбор — сложная задача, решаемая на основе многочисленных экспериментов для каждой конкретной модели автомобиля. Хорошо подобранный спойлер может снизить Сх на 6—7%.

Задний спойлер и обтекатель перед задним колесом. Помогают упорядочить потоки воздуха на автомобиле «Форд-эскорт-XR3».
Задний спойлер и обтекатель перед задним колесом. Помогают упорядочить потоки воздуха на автомобиле «Форд-эскорт-XR3».

Конструкторы ищут возможности использовать аэродинамические устройства на серийных машинах. Так, на особо скоростных моделях («Порше», «Альфа-ромео» и др.) ставят антикрылья. На чем основан их эффект? Если крыло самолета создает подъемную силу, то, перевернув его (отсюда и приставка «анти»), получим силу прижимающую, которой обычно так недостает автомобилю. Вплоть до 80-х годов антикрыло было принадлежностью лишь гоночных машин, где создает вертикальное усилие до 3000 кгс. Теперь его устанавливают и на серийных моделях. Помимо увеличения прижимающей силы антикрыло на крышке багажника так организует поток воздуха за автомобилем, что снижает лобовое сопротивление примерно на 6%.

Наряду с поисками наивыгоднеишего (в отношении снижения аэродинамических потерь) сочетания элементов кузова конструкторы уделяют серьезное внимание снижению потерь вокруг отдельных выступающих деталей.

Выдвижные фары («Порше-928», «Мазда-РИкс-7», «Матра-багира»), убирающиеся в «пазуху» между задней кромкой капота и лобовым стеклом «дворники» (ГАЗ—14, «Мерседес-Бенц-С», «Ровер-3500», «Додж-магнум-78»), отказ от выступающих дверных ручек («Рено-5», «ФИАТ-панда», «Рено-фуэго») помогают сгладить обводы кузова. Немалое значение для снижения общего аэродинамического сопротивления имеет замена выступающих водосточных желобов над дверными проемами водосгонными ребрами на крыше, как сделано у «Рено-18», «Мицубиси-кольт», «Хонде-аккорд».

В заключение можно сказать, что внешний облик автомобиля претерпел в последнее время серьезные изменения, обусловленные прежде всего стремлением полнее учесть особенности обтекания его воздухом. Улучшение аэродинамики автомобиля способствует повышению динамических качеств и при минимуме конструктивных изменений дает заметную экономию топлива. А потому можно с уверенностью предсказать прогресс в области аэродинамики. По прогнозам, к 1990 году аэродинамическое сопротивление автомобиля снизится в среднем на 10%, что даст уменьшение расхода бензина на 3,5%, а дизельного топлива — на 4,5%. В перспективе считают возможным сократить таким путем расход топлива на 15%.

Ф. УЗБЕКОВ, инженер («За Рулем» №4, 1983)

Литература
Михайловский Е. Аэродинамика автомобиля. М., Машиностроение, 1973.
Павловский Я. Автомобильные кузова. М., Машиностроение, 1977.
«За рулем», 1978, № 1, № 7; 1981, № 4, № 8.
«Автомобильная промышленность», 1979, № 11.

Коэффициент лобового сопротивления Сх

«Ауди-100»
0,30
ВАЗ-2101
0,46
ВАЗ-2103
0,45
ВАЗ-2105
0,43
ГАЗ-20
0,46
ГАЗ-24
0,45
ГАЗ-24-02
0,41
ЗАЗ-968
0,48
«Москвич-2140»
0,41
СИМКА-1307
0,38
«Ситроен-ЖСА-Икс-3»
0,32
«Ситроеи-ЦИкс»
0,35
«Фольксваген-жук»
0,60
«Фольксваген-гольф»
0,42
«Фольксваген-пассат»
0,38
«Форд-фиеста»
0,42